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1. Introduction

Constrained parameter problems arise in a wide variety of applications, including
bioassay, actuarial graduation, ordinal categorical data, response surfaces, reliability

development testing and variance component models. Truncated data problems - to be
understood as encompassing both censoring and scoring or grouping mechanisms - arise
naturally in survival and failure time studies, ordinal data models and categorical data

studies aimed at uncovering underlying continuous distributions. In many applications,

parameter constraints and data truncation are both present.
The statistical literature on such problems is very extensive, reflecting both their

widespread occurencc in appiictions and the methodological challenges which they pose.

However, it is striking that hardly any of this applied and theoretical literature involves a
parametric Bayesian perspective (although some exceptions will be noted in the context of

the examples given later, in Section 4). From a technical perspective, this is perhaps not
difficult to understand. The fundamental tool for Bayesian calculations in typical realistic

models is (multi-dimensional) numerical integration. This is often problematic in
unconstrained contexts; it can be well-nigh impossible for the kinds of constrained

problems we shall be considering.

Our goal in this paper is to show that Bayesian calculations can be routinely
implemented for constrained parameter and truncated data problems by means of the

Gibbs sampler (introduced by Geman and Geman, 1984, in the context of image processing
and subsequently proposed as a general method for Bayesian calculations by Gelfand and

Smith, 1990).

In general, we shall assume that the desired outcome of the Bayesian analysis is the
calculation and display of marginal posterior (predictive) densities of parameters

(unobserved data) of interest, although often summaries (for example, via modes,
moments, quantiles) will suffice. As we shall see, the Gibbs sampler will provide the basis

for whatever form of final inference summary we require.

In Section 2, we briefly review the Gibbs eampler and comment on experience with
its use for other classes of statistical problems. In Section 3, we present a general overview

formulation of the structure of constrained parameter and truncated data problems and the
resulting form of the Gibbs sampler. In Section 4, we develop detailed analyses for a
variety of examples. These are chosen with a view to giving the reader an appreciation of

the power and scope of the Gibbs sampler in reducing seemingly irpossibly complex
rompititi ,ai caska Wo siupie, easily implemented, iterative sampling schemes. In Section

5, we provide illustrative analyses of two artificial data sets, generated from models chosen
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to present extremely awkward inference problems. Finally, in Section 6 we provide a
summary discussion.

2. The Gibbs Sampler

Our subsequent development will use the following notational conventions.

Densities will be developed generically by square braclets, so that joint, conditional and
marginal forms for random variables U,V, appear, respectively, as [U,V] [U IV] and [I.
The usual marginalization by integration is denoted by forms such as [U] = J[U V) * [VI].

For a collection of random variables [U1 , U2,...,Uk] the full conditional densities can thus

be denoted by [UsIUr , r J s], s = 1,2,...,k, and the marginal derzsities by [Us],

s = 1,2,...,k.
Suppose we now consider the following problem. Given the ability to draw random

variate samples of Us from [Us I Ur, ris] for specified values of Ur, ris, s = 1,2,...,k, can

we find an iterative scheme which enables us to make sample-based estimates, [U5], say,

of the marginal densities, [Us], s = 1,2,...,k? We shall make the connection with Bayesian

posterior calculations later; for the moment, we note that the general question is answerrd

affirmatively by the following procedure.
Gibbs sampling is a Markovian updati scheme which proceeds as follows. Given

an arbitrary starting set of values U1 0 ) ,... ,Uk , we draw U( ) from [U IU(0)  0
"'" 1 .. 112 U-,k )1

then U( 1) from [U2 lU1), U(0),...,Uk]. and so on up to U(1) from

[Uk Ul) ...,UIk U "-" to complete one iteration of the scheme. After t such iterations we

would arrive at joint a sample (U~t),...,Ukt)).- Geman and Geman show under mild

conditions that (U~t),...,U(t) d (U1,...,Uk) . [Ul,U 2 ,...,Uk] as t -4 m. Hence for t large

enough, U(t) for example can be regarded as a sample variate from [Us]. Parallel

replication of this piocess m times yields m id k-tuples (0) ,...,U ( ) j = 1,2,...,m.lj '"kjJ

Note that sample size at, say, the w-th iteration may be increaed !rom m to any

specified size by randomly reusing the U (w-l) with replacement.

A kernel density estimate for [Us] based upon t :e u6 j can be readily obtained

(see e.g., Silverman, 1986) and should be adequate if, a the last iteration the number of
replications, m, is large enough. However, using a Rac- Blackwell argument (see Gelfand
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and Smith, 1990) a density estimate of the form

m (t)

[Us] = [UsIUrj ,r # sl/m (1)
j=1

is better under a wide range of loss functions. This is not surprising since (1) takes

advantage of the known structure in the model whereas the kernel density estimate does

not. The form (1) is a discrete mixture distribution and is essentially a Monte Carlo

integration to accomplish the desi- d marginalization. Similarly, the expectation E(h(Us))

(t)
can be obtained either as a sample estimate based upon the U s or possibly as a

"Rao-Blackwcllized" version analogous to (1) based upon E(h(Us)IUr, r # s). Now

U(t) (t)
consider a function of the U, say W(U1,...,Uk). Each k-tuple, (Ulj ,...,Ukj),

prviesanoseve Wt W(t Wt)
provides an observed WIt) .W(U , kj ) whose marginal distribution, as t - ., is

approximately [W], whence a kernel density estimator for [W] using these W(t) can bei

developed. If, say, Us actually appears as an argument of W the full conditional density

[WU r, r # s] can be obtained by univariate transformation from [Us I Ur, r # s]. Thus a

"Rao-Blackwellized" density estimate for [W] analogous to (1) can also be obtained.

In the Bayesian context the Ui  are the unknown parameters (or possibly

unobserved data) in the model. W would be any function of the parameters (or

unobserved data) which is of interest. All distributions are viewed as conditional on the

observed data, whence the marginal densities, [Us], become the desired marginal

posterior distributions of the parameters (or unobserved data).

So far as ease of drawing samples from the full conditional distributions is

concerned, in many cases the likelihood and prior forms specified in the Bayesian model

lead to familiar standard full conditional forms, such as normals and gammas, and

implementation is immediate. In other cases, we simply have, up to proportionality, a

mathemat*rca fnrm 'or the full conditional and must employ tailored versions of general

random variate generating procedures such as the ratio--,f-i-iforms and reipct.i.)n nictl'cgs

(see, for example, Devroye, 1986, or Ripley, 1986).

Finally, we note that complete implementation of the Gibbs sampler requires that a

determination of t be made and that across iterations, choice(s) of m be specified. In a
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challenging application some experimentation with different settings for t and m will
likely be necessary. We do not view this as a deterrent since random generation is
generally inexpensive and since in many cases there may be no feasible 2ternative. In the

examples of Section 5, convergence was evaluated in a univariate manner by plotting
marginal posterior density estimates of the form (1) five iterations apart in order to judge
stability. Typically, a somewhat small m is used until convergence is concluded, at which
point, for a final iteration, m is increased by an order of magnitude to develop the
present.-A density estimate. We make no claims for the optimality of this procedure.
Assessment of convergence is a complex issue which is currently very much in the empirical

domain.
However, extensive computational experience in a wide variety of parametric models

has given us considerable confidence in the pragmatic procedure described above. See, for

example: Gelfand and Smith (1989, 1990); Gelfand et al (1989); Carlin et al (1989);
Racine-Poon et jj (1990).

Since the cited papers contain extensive discussion of very detailed specification of
the Gibbs sampler in a number of situations, we avoid unnecessary detail in what follows,
concentrating instead on the structural insights which underlie the specification of the
required full conditionals. Having followed the general discussion, the reader can easily

supply the missing detail in any specific example.

3. Models: General Structure

In this section, we provide a discussion of the Gibbs sampler structures arising from
rather general formulations of Bayesian parametric versions of constrained parameter and
truncated data problems. As indicated in Section 2, the implementation problem reduces
to identification of the appropriate full conditional distributions and methods for drawing

samples from them.

3.1. Constrained Parameter Models

Consider a parametric model for data Y involving a k--dimensional parameter

k k
vector 0, constrained to lie in a subset Sy of Rk. Often the constraint set S y is

determined by order or other inequality relationships among the components 0, i =



6

1,2,...,k, of 0, in which case, Sk = Sy does not depend on Y. In other cases,

constraints occur because the region of positive support for the distribution of Y depends

k
on U, so that Y occurs explicitly in Sy : see, for example, Section 4.5, where Y =

(YIY 2, ...,k)and 0i < Yi, i = 1,2,...,k. In the former case, it is natural to think of the

constraint as built into the specification of the prior distribution, [? I A], where A is some

hyperparameter; in the latter case, it is natural to think of the constraint as built into the

likelihood, [y I ]. In either case, it suffices to note that the constrained Bayesian model

(likelihood x prior) is given by

[Y(O) [A01] (y, 0) C S

0 (y, 0) 9 S

k
where S = {(y,0):S y}. In general, [YI0, [.AI, as functions of 0 have the functional

forms they would have had if constraints were ignored. It follows immediately

(generalizing slightly a remark in Box and Tiao, 1973, p. 67) that the posterior distribution

for 0, given the constraints, is simply the unconstrained posterior appropriated

normalized so that

[9 = [ 19] [!IA] GEk (2)
k Y10 [01A]

k k
Now let Si (0. j # i) denote the cross--section of Sy defined by the constraints on

component 6. at a specified set of values 0., j # i (where, for the cross-section, we have

1i

for notational convenience suppressed possible dependence on Y). In the case of scalar

k1
components, Si (9, j # i) is a subset of R1 , typically an interval or a collection of

intervals. It then follows immediately from (2) that the full posterior conditional

distribution for 0. is defined by
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k
[#YI ,ji , rY 1 [6 1.A], iSi(Oi, ji), (3)

where the right-hand side is regarded as a function of 0. for specified 0j, jfi. When for

0i the likelihood and prior combine to give a conjugate Bayesian form, the unconstrained

version of the full conditional for 0i will be a familiar standard distribution, defined by

the conjugate prior to posterior updating. The constrained form (3) will then simply be the
k

standard distribution restricted to Si (0., jii).

This latter point is critical. Regardless of how complicated the overall constraint
k k

set Sy is, to implement the Gibbs sampler we need only consider Sy in univariate

cross-sections. Moreover, to carry out the actual sampling we need only identify the full
conditionals under the unconstrained model and then make the restriction to the

cross-sections.
One way of doing this is simply to generate from the unconstrained full conditional,

and retain the variate value only if it falls in the cross-section constraint region.

Alternately, suppose the form of the distribution function, Fi, say, of the full conditional

for 0i is available and the cross-section is an interval, [a,b], say. Then, if U is a uniform

-1
(0,1) variate, it is noted by Devroye (1986, p.38) that 0i = Fi [Fi(a) + U(Fi(b) - Fi(a))]

is a drawing from the constrained full conditional. Thus we sample "one-for-one" from
the constrained full conditional. This is easily extended to the case where the cross-section

r
is a collection of disjoint intervals, Ul[a''' say. In this case, we choose J=j with

r 1 -1
probability [jE (Fi(bj) - Fi(aj))]- [Fi(bj) - Fi(aj)] and, given j, set - Fi [Fi(aj) +

U(Fi(bj) - Fi(aj))] , where U again is a uniform (0,1) variate.

In general, sampling from constrained full conditionals will not be particularly

efficient, especially in the case of nonstandard, unnormalized distributions. But this is
more than compensated for by the striking ease of implementation of the Gibbs sampler,

enabling one to carry out full Bayesian calculations for complex constrained parameter
problems which were previously unanalyzable by standard numerical integration

techniques.
Finally, we note a further feature thak.arises in impleme, "ing the Gibbs sampler
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were we to seek to extend the above to a hierarchical model by adding a prior [A] for the

hyperparameter A, thus far assumed to be known. The full conditionals for the 0 are

unchanged and are given by (3). However, the full conditional for A doesn't depend upon

Y and takes the form

[1Y,O a [?IlA] [1 C(A). (4)

where c(A) = (Js[$I [. 1. If 0 is not constrained by Y, c(A) simplifies to

(Jk[0[ A])-' but regardless c(A) will typically not be available explicitly (see, e.g.

Sections 4.1, 4.2) making sampling from (4) almost impossible.

3.2 Censored Data Models

To develop a general framework for censored data models, consider random

n-vectors Y,VW with joint density defined by

[Y,Y,W I .?,_ = [Y 'YW h [I,WlI]

in terms of parameters 0 and 77, and define component-wise a further random n-vector Z

by

Vj Yj < Vj
Z Y if V < Y j < W j=l,2,...,n (5)

Wj Yji > W j

We shall consider Z to be observed data arising as a censored form of Y through the

censoring process [V,W . , with V and W also observed. In this very general

formulation, V and W are random, but the process could, of course, be degenerate for

either or both. In particular, right or left censoring only (corresponding to Wj = -s, V. =

+M, respectively) are include as special cases.
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To complete the Bayesian model, let us assume that prior distributions are specified

in the form [01 A] [.i1 [A], so that the full model becomes

[.zly,wV,. - [y,wlv]1- [01A] - [71]. [A], (6)

where the form of [zVy,wo is defined by [YIV,W,] and (5). Other forms of prior

specification could, of course, be considered, but the form given here, LAvolving a
hyperparameter A in the construction of the prior for 0, will suffice for our later

illustrative examples. We shal asslime that interest focuses on the marginal posterior

distributions for the components of 0, [ IZ,V,W], i = 1,2,...,k as well as perhaps

[.I ZyW],

At first sight, it appears natural to try to implement the Gibbs sampler using the

full conditional distributions for 01, 02,...,Ok, 17 and A. We note, however, that

[Ol,v,w 0j, jifi, 77,A] o [zvwA • O
with the right-hand side considered as a function of 0. for specified 0., jji. This leads to

difficulties, since the density [ZIV, W,0 will generally be awkward to deal with. Suppose,

n
for example, that [YIVW,. = [Y1.0 = flf(YjI_). Then [ZjIYwI0 f(Zj.I0) if

j=1J J - I .1 -
V.

V. < Z. < Wj, but has point masses 5(Vj, ) = J Jf( )dZ at Zj = V and

~'(.0) =f f-(Z I 9)dZ at Z. W. Generally, b., and T will not be available in
J W - -1

explicit form which means that this will also be the case for [Z V,W,.] whenever any Z

equals either V. or Wj, i.e., whenever censoring occurs.

To avoid this difficulty suppose instead we treat Y as an unobservable and include

it in the Gibbs sampler. The model (6) now becomes, in its most general form,

[ I YIVWI[Y I y,W,6][y,W I n][01 ][ .l[ .] (7)

Here [Z I Y,V,W] is, of course, a degenerate distribution and in typical applications we
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shall have [YIV,W,o = [YI f]. Note that now

[6i I ZYVW, 'j, i, ,A] a [YJV.W.?] [.OIA ]  (8)

The right hand side of (8) is now an explicit function of 0. and sampling no longer

presents a problem. As we remarked in the previous section, under conjugacy, saMling

from 0. will simply involve sampling from a standard distritution. Without conjugacy

we will need to sample from a nonstandardized density using, for example,

ratio-of--uniforms or rejection techniques. The remaining full conditionals required for the

Gibbs sampler are given by [7IJ ,,Y,V,W,0,A] a Yyw[][I], and [.AJY,y,w,8,7] M

[0[A][A] to which similar remarks apply, arxd finally [YIZ,V,W,0,7,A] m [ZIY,V,W •

[Y IV,W,. Again, for illustration, consider the typical case where [YIyw,] = [Y[L =

n
H f.(Y0). Then the Y., are conditionally independent and the full conditional

j=1 I 3'
distributinn for Y. has the following form: it is degenerate at Zj if V. < Z. < W*; it

has the distribution f(. 1) restricted to (--z, V) if Zj = V and has the distribution

f.(-1) restricted to ( j, -) if Z. = W.. Sampling the Y. is therefore routine, the

latter two cases being handled perhaps by the "one-for--one" methods described in Section

3.1.

3.3 Grouped Data Models

To illustrate scored or grouped ordinal data models, suppose that instead of

observing the actual coordinates of a random n-vector Y we only observe a score,

Sj= b t if at_ 1  Yj< at , j = 1,2,...,n, t = 1,2,...,T, where the at, bt are known fixed

constants (often with a0 = --w, aT = +®). Assuming Y to have a parametric

distribution [Yj and 0 to have a prior defined by [01 A], [A], the Bayesian model is

given by

wSh r ?] 01 i] [il
where [S is induced by [Y .
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As in the previous section, the natural Gibbs sampler, defined directly in terms of

the full conditionals, [A I S,.] and
[oi IS,0ji, jji, ]  [SI 801.A],

runs into trouble due to the presence of [SIq0, which, in general, is not an explicit

expression in terms of 01,02,... 0 k. The solutfon, agaiii, is to include tle unknown Y as

part of the Gibbs sampler. The Bayesian model then becomes

and the ful conditionals are gi% en by

[. lSYy I .1 [?I

together with the conditionals for Yj given Yi, i#j, derived from

n
Sampling is now straightforward. In particular, if HYI0 = 11 f.(Y.j 0) and S. =bt the

- - 1 J J

ful conditional for Y is simply f(. I.0) restricted to [at_, at].

4. Models: SRCific Examn!es

In this section, we make explicit the forms of the Gibbs sampler arising from a

variety of examples of the general structures discussed in Section 3. Our development is

designed to illuminate for the reader the astonishing simplicity with which the

appropriately defined Gibbs sampler solves the problem of Bayesian computation in

constrained parameter and truncated data contexts.

As we remarked in Section 1, there is remarkably little literature on Bayesian

approaches to these problems and that which exists typically does not solve the problem of

calculating marginal densities, f'ut only attempts limited inference summaries in the form

of modes or means. Ordered restricted inference is discussed at length from a frequentist

perspective in the books by Barlow et al (1972) and Robertson et. al. (1988). The former

has some discussion of Bayesian inference for ordered exponential family parameters, but

#his is largely limited to a discussion of the joint posterior mode as an isotonic regression.

The latter provides a convenient review of the brief Bayesian literature on ordered

p,.ramct.ers. We kncw of no systematic discussion c. truncated dita problems from a
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Bayesian perspective.

4.1. Ordered Binomial Parameters

Suppose that we have conditionally independent observations Yi - Binomial (niPi),

i = 1,2,...,k, where it is known that P1 
- P2 5"... Pk and we seek to make inferences

about the pi (or functions thereof, such as Pi+- pi or ( pi+ 1-Pi)/pi ), This problem

is discussed in Broffitt (1987) and in Sharpies (1988). It arises naturally in reliability

development testing, where interest often focuses on Pk (see, for example, Smith, 1977,

and Fard and Dietrich, 1987) and in bioassay, where pi = P(xi) may be thought of in

terms of a monotonic increasing relationship with dose or stimulus. The function p(x) is

referred to as a potency curve. See, for example, Kuo, 1988, for recent discussion and

related references.

A flexible, convenient form of prior distribution over the simplex

Sk {(P1'P2,...,pk) : 0 _ P1 - P2 -'-Pk < 1} takes the form

k ai- Ai -
ck(al1a2,...,ak ; 01,02, .... Ok)iUiP i  ,1p (9)

1=1

where ck is the normalizing constant and ai,f i are chosen to reflect prior beliefs. Note

that this is equivalent to unconstrained pi having been drawn independently from

Beta(ai,i) distributions, and that if ai = a, fli = P, it is equivalent to the pi being

order statistics from a sample of k iid Beta(a,fl) variables. For integer ai,fi, the

constant ck can be obtained as a finite multidimensional summation (see Sharpies, 1988).

By conjugacy, the joint posterior [pIY] has the same form as (9), but with the

ai,fl replaced by ai + Yi, i + ni - Yi, respectively. (Again, in the case of integer ai,f i

the exact marginal posterior densities for the pi can be identified as very complicated

weighted averages of Beta distributions; see Sharpies, 1988.) Implementation of the Gibbs

sampler is extremely simple. From (9), we see immediately that, for i = 1,2,...,k,

[piIY, pj, jfi] = Beta(a i + ri, Pi + ni - Yi) restricted to pi 1
- pi Pi+ 1 , with
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P0 = 0, Pk+l = 1, so that sampling reduces to interval restricted sampling from a

standard distribution, as discussed in Section 3.1. We need never concern ourselves with

calculation of ck.

4.2 Ordered Exponential Family Parameters

For conditionally independent observations from one-parameter exponential family

models, with increasing parameters and a constrained form of conjugate prior, the analysis

given in Section 4.1 generalizes in an obvious and straightforward way. The resulting full

conditionals again reduce to interval restricted sampling from the standard posterior forms

arising from the conjugate analysis.

Detailed developments are given by Broffit (1984), motivated by graduation

problems in actuarial science. He considers ordered parameters from a family of models of

the form

f(YI ) = a(Y) 04( Y ) e7c(Y), U > 0 (10)

which includes models such as gamma with known shape parameters , normal with known

mean and Poisson.

Suppose, then, that conditionally independent observations yij, i = 1,2,...,k,

j = 1,2,...,n i  are available from f(. 10), where it is assumed that 8

Sk= {- = (01,...,8k) : 0 < 01 S 02 ... Gk}. Broffitt suggests a convenient and flexible

prior family for 8 over Sk of the form

i-1 _i
dk 0i  t

dk(61,...,k; Y)1, ... ,k "Y U11)
i1 71 r(6i)

where dk is the normalizing constant and bi, "'i are chosen to reflect prior beliefs. Note

that (11) arises from independent Gamma priors were the 0i unconstrained. In the case

where the 6i are integers Broffitt obtains ck as a finite multidimensional sum. The joint
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, ni

posterior [01] has the same form as (11) with i replaced by i  6i + E b(1ij) and

j=1
n

"yi replaced by- = ( + E c(Y.)) The posterior mean for 0. under the
1 j=l 1

unrestricted problem is Vi = 6. i" Using isotonic regression Broffitt obtains the order

restricted Bayes estimate for 0. under squared error loss as a function of Vi and two

dk's.
To implement the Gibbs sampler we only require the full conditional distribution

[611Y,O, jjiJ, i = 1,2,...,k. Under (11), this is merely a Gamma (6i, yi) restricted to the

interval [Oi_ , 0.i+1] where 0o -0, Ok+ i -.. As in the previous example, we need never

concern ourselves with calculation of the normalizing constant dk.

4.3 Ordered Multinomial Parameters

Sedransk, et al (1985) discuss the problem of Bayes estimation of finite population

parameters when a raldom variable X assumes one of a finite set of values {bl,... ,bk}

with probabilities plP 2,... ,pk, respectively. A particular application is the case of

household income, where b might denote a central value for t.%-- jth income category.

Assuming the categories to be arranged in increasing order, we would expect that
the pj would increase up to some category, t, say (1 ( t < k), and then decrease

thereafter. Typically, t would be unknown. The quantity of primary interest in such a
k

situation might be the finite population mean, E bipJ, although other functions of p
j=1

could also be of interest. A possible Bayesian model for such problems is given by defining
k

Y. = # of observations in category j, with E Y. = n, so that (Yip] =
j= 1 J

Mult(n; P1 P2'""..Pk) " Following Sedransk et al, given t we specify a prior [pit] the

form

C(r..0 E . (12)



15

k

over S j=1 whereove Sk = f(pl, ...,Ipk) : P1 <- P2 <-"-Pt -? Pt+ -? ..PkI 0_ p( _ PI, Pi 1)wher

C(fl,...,#k;t) is the normalizing constant. Note that (12) arises from a Dirichet prior over

p were the pi unconstrained.

Sedransk et al assume t is known and only compute desired posterior expections

using Monte Carlo itegration, employing importance sampling to avoid calculation of c.

To implement the Gibbs sampler requires the full conditional distribution, for pi,

I - 1,...,k-1 (Pk is a function of these pi), [pi1JY, pi, j = 1,...,k-1, jji, t]. This is clearly a

k-i
Beta distribution scaled to [0, 1- J p) and then suitably restricted according to the

j=1
joi

constraints determined by t. Thus, if t is known the Gibbs sampler also avoids

calculation of c. Moreover, empirical work (as in Gelfand and Smith, 1990) suggests that

iterative Monte Carlo integration using the Gibbs sampler will be more efficient than

nonmterative Monte Carlo integration such as that used by Sedransk et al.

Suppose t is unknown whence we take it to be random with discrete prior

Pr(t = j) =rj, j = 1,2,...,k. We note that [t[Y,p] is a degenerate distribution. Therefore

the Gibbs sampler can not be directly employed since a condition for its convergence is

that transitions from one t to any other are possible. This hierarchical situation differs

from that in expression (4). There A is a hyperparameter having nothing to do with the

order restric'ions. Here t determines the restrictions.

Fort ;ely, the marginal posterior for t can be calculated directly taking the form

c ( l,...,0k; j)r'j/C(/Pl+Yl, •.k+Yk ; j )
Pr(t=jIY) - (13)

E. c(fij,...,jk; t),t/c ( Pl+Yl,.. ., Bk+Yk;t )

t=1

Evaluation of the 2k c's in (13) can be done straightforwardly using Monte Carlo

integration with importance sampling as in Sedransk et al. Thus we can estimate the

marginal posteriors for the pi by using the relationship

k
[pilY] = E [pi.Y,t][tIy.

t=1 -I
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For each given t we can use the Gibbs sampler in the customary manner to obtain

samples approximately from [pi I Y,t]. We can then resamnle from these samples according

to It I Y] to obtain observations approximately from [pi IY] " Full details of all the

required sampling in the context of an illustrative example are given in section 5.1.
Note that in a different context the sequence pi might, for instance, be assumed to

have a bimodal form, e.g. for grouped data arising from samples of exam scores, or from
samples of heights or of weights. It is clear that our formulation of the present example

can be extended to handle such cases. Also note that this example is a nonparametric
version of the grouped ordinal data problem. We are concerned only with the probabilities

for the income categories and not with an underlying parametric model for the incomes

themselves.

Finally, extension to models involving collections of independent multinomials with
order restrictions perhaps both across and within populations is straightforward.

4.4Ordered Linear Model Parameters

We demonstrate the potential of the Gibbs sampler for the Bayesian analysis of

constrained parameters in general normal linear models by considering an illustrative

analysis of a simple two-way layout. Application to normal means without linear
structure appears in Gelfand et al (1989); application to ordered slopes in a change-point
regression model is given in Carlin et al (1989). Extensions to other problems will be

obvious from the following development.

Consider, then, a model of the form

Y. = a. + #- + Lij, i = 1,2,...,I, j = 1,2,...,J, (14)

where the ei are independent N(O,a 2 ), and prior knowledge about the linear parameters

constrains the ai to be decreasing in i and the P. to be increasing up to some unknown

level t and then decreasing. Such a model generalizes the "response surface" priors

discussed in Smith (1973) and finds application in many contexts where factor levels

correspond to increasing (decreasing) levels of a treatment, fertilizer, etc. Other
applications occur in consumer preference studies (Green 1974, Green & Srinivasan, 1978):
here, Yij might to a scoring or ratini: of a product, such as a candy bar, with factor ai
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corresponding to price level and /7* to sugar context level.

The discussion of the previous sections indicates the obvious way to proceed. We

place a multivariate normal prior on the set of ai,# , independent of the ij ignoring the

order restrictions. To complete the Bayesian specification we place, say, an inverse gamma

prior on a2  and a discrete distribution on t. Simple conjugate analysis (using, for

example, the algebraic forms given in Lindley and Smith, 1972) straightforwardly reveals

the full conditionals for the ai and P. to be univariate normals suitably constrained (the

constraints for j being dependent on t). The full conditional for a2 is the conjugately

updated inverse gamma, and that for t is obtained using the technique described in the

previous section. Full detail on the required sampling in the context of an illustrative

example is given in section 5.2.

4.5 Ordered and Data Constrained Parameters

k
As an illustration of a situation where the constraint set Sy discussed in Section

3.1 depends on Y, consider the following model, which has applications to reliability

development studies and survival analysis. We suppose that Yi. i = 1,2,...,k, j = 1,2,...,n i

are conditionally independent observations from location and scale exponential models, so

that Y has density

f(YiJ. 0ia.) -exPJ-(Yij-), YI > 0. > 0 a. > 0.
J 1 1' a1)/J., I , 1

In the absence of order restriction amongst the parameters there is recent

decision-theoretic discussion of simultaneous point estimation of the location parameters in

such models, assuming known scale parameters and vice versa. See for example Ebrahimi

and Hosmane (1988), Das Gupta et al (1988).

Here, we shall complete a Bayesian model specification by assuming, for purposes of

.,.ustration, that 0 < 01 02 <..._< 0k are the k order statistics from the exponential

asity A- exp{-$/A}, with A known, and that the a'i are iid from IG(a,b), the inverse

mma density [ba/p(a)] [exp{-bli}/a+l ], with a,b known. We are interested in
;aining the marginal posterior densities for the 0 and a'i (or functions tht:eof), a

)blem which we note is extremely unpleasant using standard Monte Carlo integration
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k
due to the awkward nature of Sy, defined by Yij 0 .1 > 0 and 01 _ 02 0k.

However, approached via the Gibbs sampler, the analysis is very straightforward.

In particular, consider the full conditional distributions for the 0i and ai. The ai are

conditionally independent with

[aiY, .0 = IG (a + ni/2, b + ni(Y i -

n.

where Y = ni E Yi." For 6i we have

j=11

[il6y,.  , Oj,j im e 1

restricted to the interval 0i_1 _ 0i < (min Yi ) A 0i+ 1 , where 00 0, 0k1 -. These full

conditional distribution are therefore easily sampled and the Bayesian analysis

straightforwardly implemented.

46 Straight-ine Re ession With Censoring

As a first illustration of a truncated data problem, consider the special case of the

structure introduced in Section 3.2 where [YJ 0 corresponds to conditionally independent

straight-line observations generated from Yij - a + fiXi + -ij" N(O' a 2 ), i = 1,2,...,

j = 1,2,...,n i and Z is defined by

I Yij Yij < di

z ij { if

di Yij > di

Thus, at each setting Xi of the regression variable there is a cut-off d-, above which the

value of Yi cannot be observed. An application of this model is given in Schmee and

Hahn (1979) and a Bayesian analysis using adaptive Gauss-Hermite quadrature is given in

Naylor and Smith (1982), where various subtleties required in performing the numerical

integration are noted.

In contrast, the implementation of the Gibbs sampler using the approach set out in
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Section 3.2 is straightforward. We include the unobserved Yij (i.e., those where

Yij > di) as further unknowns in the model. Then, given conjugate normal priors for a, 6

and inverse gamma prior for a2 it is dear that the full conditionals for a, f and a2 are

the updated conjugate forms obtained by standard Bayesian analysis assuming all the

Y.iAo be observed. The full conditional for any unobserved Yij is simply N(a + flXi, a2

restricted to the range Yi. > di. The required sampling from all full conditionals is

therefore immediate.

4.7_ Truncated Bivariate Normal Data

Consider a bivariate normal process where Xi is observed and then Yi is observed

only if Yi - Xi, i = 1,...,n. Such data arises, for example, in paired survival time studies

(perhaps using logarithms of survival time) where observation is terminated when the first

patient dies. The more general version where observation is terminated when either

patient dies can be handled in a similar fashion to the development given below.

More precisely, assume iid pairs (Xi,Yi) such that for i = 1,2,...,n

x. a a2
[(X')] = N(( x), ( x y )) (15)

y 'xy y

We observe the pairs (Xi, Zi) with Zi = Y. if Yi - Xi; otherwise we observe (Xi, *)

where Zi = * indicates that Yi > Xi" Inference for 91 9y is of interest as well as,

0

perhaps, for E, the covariance matrix in (14). A convenient prior form for ( ') is

y

N((A x),V) and for E an inverse Wishart, so that [EF1] = W((pRf- 1 , p) with /p, V, p

'A
and R assumed known. Interest focuses on the marginal posterior distributins of 0 9

x'y
and E. Following the development of Section 3.2, these may be routinely obtained using

the Gibbs sampler. As in section 3.2, treating Y as an unobservable, we will need the full

conditional distributions of 01 0 E, and Y..
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x. e ALetting = ( 0 = ( Y = () and using standard distribution theory it is
Y1 0y Ay

straightforward to verify that:

0Tii=1,... ,n,Z,AE]=N(V(n- 1 Z+V)-IT+n-(n-l+V)s,(n-'+V- 1 )-1) (16)

where T n-1 E T i and from (16) the full conditional distributions for x and 0
i=1

are routinely obtained,

[E"-1ITi, i=1,...,n, Z,0] = W((Z(Ti- 1 )(Ti-0)T + pR)- 1 , n+p) (17)

from which sample generation is easily achieved as detailed in Gelfand -t al (1989).
Routine analysis also shows that the Yi are conditionally independent with

[Yi IXi, Zi, 0, Z] = N(0 y + axy(XiOI)/a2, 2 -ay/a2 )

if Z. = *, and Yi degenerate at Zi otherwise

There are a number of obvious extensions and generalizations of this kind of
structure. Examples include: further modeling of 0x and 0y as parametric functions of

exploratory variables; trivariate or multivariate data and bivariate exponential family
models with conjugate priors. The reader can doubtless think of others. The point we wish
to stress is that systematic use of the ideas of Section 3.2 will lead in each case to a
relatively straightforward form of Gibbs sampler, no matter how seemingly complex the
initial model structure is.

4.8 Bivariate Grouped Data

Suppose that data from an underlying continuous bivariate distribution has been
grouped into an IxJ table, and we wish to make inferences about the parameters of an
assumed bivariate parametric form for the unobserved continuous data.

In what f6llows, we shall assume, for illustration, an underlying bivariate normal
population of the form (15) given above in Section 4.7. For convenience of nomenclature,
we shall refer to the two component variables a "height" and "weight", with height groups
[a i_, ai], i = 1,...,I, and weight groups [b,__, b), j = 1,...,J where a0 = b0 = 0
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(technically these should be ---), aI = bi = w. The data consist of counts ni =,

j = 1,...,J where nij denotes the observed number of individuals in height group [ai_l, al]

and in weight group [bj..1, bj]. If E E nij = n, the nij are distributed as
ii

Mult(n; Pi' P121""P I) where pij = pij ( 6,) = Pr(a 1 
-< X < ai, bj_ 1  Y < bj) under

(15). For illustration, we adopt the same prior structure for 0 and S as given in the

previous section, i.e. [0 = N(LLV) and [E- 1] .W((pR)-',p), and we seek the marginal

posterior distributions [0, I n], [0y In] and [E In] where n = (n1 1 , n12 ,...,nij).

The Gibbs sampler is most easily implemented if we include the T= ),

s = 1,...,n in the model as unobservables. We then require the full conditional
distributions for 0X, 0y) E and T = But [0[T,n,E] is exactly (16) from which

the full conditional distributions for O, and 0 can be readily obtained. Similarly,
y

[ITn, is exactly (17). Finally, we need to generate T, s = 1,...,n given n,O and E.

But this merely requires, for each pair ij, that we generate ni, independent observations

from (15) restricted to [a 1, ai] x [bj~l, b). Each such generation can be implemented by

2drawing X from N(Ox, ox) restricted to [a,-1' ai] and then Y given X=x from
2 2 2, b2

N( y +o XY (x-8x)o!xj ay - ax/cTx) restricted to [bJ1 b)].

We note the obvious extension to higher dimensional tables arising from an

underlying multivariate normal model. Another interesting extension arises if we have a

collection of independent two way tables arising from a third classification variable, i.e.,

product multinomial sampling (see Bishop, Fienberg and Holland, 1975). To be concrete,

suppose this third variable is age and the bivariate groups do actually correspond to height

and weigh:. That is, grouped height and weight data is supplied (using the same groups)

for a sampie of say 5 year old children, a sample of 6 year old children, etc.. Under (15) it

seems reasonable that both 0x and 0 should increase with age. Thus we have both
x y

grouped e. -a and ordered parameters within one model. We leave details of this extension

to the re-- er, who by now will not be surprised to find that the Gibbs sampler is very

straightfc ard, despite the seeming awkwardness of the model and parameter constraints.
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5. Illustrative Analysis

In this section, we analyse two artificial data sets, derived from models based on

those discussed in Sections 4.3 and 4.4. It will be clear from Section 4 that real

applications of these and the other models discussed exist in abundance. Our purpose in

analyzing artificial data sets generated from known models is to provide insight into and

calibration of the performance of the methodology we have presented.

5.1 Multinomial With Ordered Parameters

As an example of the problem discussed in Section 4.3, Table 1 shows a k = 8 cell

multinomial model and the results of 40 random draws from this model

Pi 03 .07 .10 .25 .30 .12 .08 .05

Yi 1 4 1 12 13 4 4 1

Table 1: Multinomial Population and Generated Data

We assume that the pi increase i = 1,2,...,t and then decrease thereafter but otherwise

Pi and t are unknown. We take the generalized uniform Dirichlet, ai = 1, i = 1,2,...,8

and calculate the constants c(1,...,1;t), C(Y1+l,...,Y 8 +1;t), t = 1,2,...,8, as described in

Sedransk et al (1985). Using (13) we obtain the marginal posterior, [t I Y], which is shown

in Table 2. Note that despite only 40 draws from an 8 cell table and a flat prior [t YI

places nearly all its mass on t = 4 and 5.

t 1 2 1 3 1 4 1 5 1 6 1 7 1 8
p(tIY) .0000 .0001 .0013 .3527 .6350 .0104 .0005 .0000

Table 2: Marginal Posterior Distribution of t

As remarked in Section 4.3, to obtain the marginal posteriors, [pi Y], we

implement the Gibbs sampler in a slightly different way. We use general k and

a 1 ... ,ak) in the ensuing details. Since
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k
[piI Y1 = 1l[Pi IYt] [tI (18)

and since [t JY] has already been obtained we propose to sample from [pi Y] by

randomly selecting t according to [tlY] and then sampling pi from [piY,t]. The

densities [pi .Y,t] can be obtained using the Gibbs sampler in the customary fashion, as

indicated in Section 4.3. More precisely, we only require the full conditional distributions
k-1

for pi, i=l,...,k-1 since Pk = 1 = E But [pi Y t pj j=1,2,...,k-1, jji = Beta(a i +
i=1

k-i
YiP ak + Yk) scaled to the interval [0, ai] where ai = 1 - pj,j#i, and then restricted

to an interval determined by the other pj's and t, i.e., with po -0

if i < t, max (pil, ai-Pk-I -  pi - rmin (pi+l, ai);

if i > t, max (pi+ 1 ai-Pk-1) _ Pi n min (Pi-l a);

it i -- t, max (Pt-l, Pt+l, at-Pk-1) (- pt (- at-

The output from m replications of the Gibbs sampler will be vectors pt = (Pj.pj)
t

j = 1,2,...,m, such that the p. are approximately distributed as [plY,t] and thus the

t
Pij = 1,...,m, are approximately distributed as [pily,t].

Suppose we run the Gibbs sampler in this manner for each t, t = 1,...,k. Then in

theory we could obtain a kernel density estimate for each [p1 I Y,t], t = 1,...,k and thus via

(18) a density estimate which is a finite mixture of these. In practice we would merely

randomly select t according to [t I Y and then make an equally likely choice from the set

of ptj, j - 1,...,m. This resampling procedure results in an observation approximately

distributed as [piY]. Repeating this process a large number of times (1000 times to

create the plots in table 2) we can compute a kernel density estimate for [p1 I Y1.

Returning_to the analysis at the beginning of this section, in Figure 2 we plot such
kernel density estimates for the illustrative set pl, p3. p5, p7. We note that these

posteriors reflect the order restrictions and have modes close to the respective true values.

The complete set of posterior modes is given in Table 3.
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1j 2 3 _]4 5 6 71
mode of 0 19 1.061 .082 .246 .289 [.096 .063 .019

Table 3: Marginal Posterior Modes of the [pi I Y1

5.2 Two Wa Layout With Ordered Parameters

Consider the problem discussed in Section 4.4 Table 4 presents a set of data, Y,

generated from (14) of Section 4.4 with a1 = 2, a2 = , a3 = 0, a4  -2, fI = - 12 =

0, f3 = 2, #4 = -1105 = -2, and a 2 = 3. Thus for each column cell expectations decrease

while for each row they increase to the middle column and then decrease. The data is

rather noisy often at odds with these expectations. Ordinary least squares analysis

ignoring known order restrictions is terribly misleading; aI = 1.064, a2 = -1.163, a3 =

.536, a4 = -5.203, 1 = -1.737, fl2 = .758, f3 = .283, 04 = -3.344, ki5 = -1.917, or =

3.590. The analyst obtains estimates for the ai and 8. which -il to meet the restrictions
J

and are iften far from the true values. Some sort of constrained least squares solution (an

isotonic regression) would be a better freq.entist approach.

i \ _ 1 2 3 4 5

1 .982 1.902 3.797 -1.531 .570

2 -1.417 1.356 1.287 -3.629 -3.413
3 -1.601 4.713 .814 .834 -2.08'
4 -4.912 -4.541 -4.768 -9.051 -2.744

Table 4: Generated Two Way Layout Data

Bayesian analysis using the Gibbs sampler is e'isily implemented in this case

yielding narginal posterior distributions for the ai, the and A2 . In the process, using

say posterior modes, the isotonic regression problem is sol i.

Specific details are as follows. Suppose for simpl- y we assume conjugate normal

and inverse gamma forms for the oil j and for a2 !spectively. That is, ignoring
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restrictions let ai 4.i.d. N(0,O2), 2 3 i.i.d. N(0,c ). (For convenience we have centered

these priors at 0 and have chosen the above ai, #3. to be approximately centered at 0 3s

well). Let a2 -IG(a,b) independent of the ai and 13. We make the.e priors rather
vauebysetig 2 = ,2

vague by setting 2 a# - 5, a = 0, b = 1. The full conditional distributions using

general o, ap, a, h and incorporating the uAer restrictions are:

2 a 52(V 13 0'2
[aiIY, ar, r 3, Oi ] = N(- ' 2 2-2 -r-5g -g, i-1,2,3,4

5 5
restricted to (ai 1 , ai) where a0  -, a5 

= + , Yi.= E Y and "-= ;
a5 Y-=- ii/5 j=1 P

2- 2 2

[ijl Y, sj, a,2] = N(-4a.(. -a-)J 4a+ a ), j=1,2,...,5

restricted to (f , j+1) j -= 1,2, ( 1 ,j+,l j_1), j = 4,5, [min(fl2 , fl4),m), j 3 where

4 4
0 ---, 6= +0, Y.j = i1i and a- = Eai 4 )

(a 2Y, ai, i=1,...,4, #., j=1,...,51 = IG(a+10, b+, E(Yi-ai-0j)2/2).

As output from running the Gibbs sampler Figures 2, 3, Pnd 4 show the marginas

posterior distributions for the ai, the #3 and 2 respectively. Figures 2 and 3 show that

these marginal posteriors respond to the order restrictions. In particular marginal posterior

modes are a 1= 1.480, a2= .197,a 3= -.507,a 4 = -3.684,#3,= -1.039,132 = .535, 03 =
* 8* -170,

1.261,14= -1.149,= 790,a 2 = 3.975. These are in accord with the restrictions and

generally much c[osr to the true values than the ordinary least squares estimates. While a

constrained least , ,uares solution would no doubt produce comparably good pcint

estimates, because t-e Gibbs sampler cnables marginal posterior distributions for the Ci
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for e.g. a.+#. for e.g. ar-as rs etc. we can in addition easily obtain Bayesian

interval estimates for any functions of the model parameters which may be of interest.

In the above we have assumed that 03 was known to be the largest 0. If we did

not know which subscript denoted the largest 1 we could use an approach analogous to

that described in the previous example. If we felt the data contained some outliers, we

might robustify the Bayesian analysis by assuming that the distribution of the errors in

(14) is [ ii A i) = N(O, A 1 02 ) where vAij-Gamma(v/2, 1/2) so that marginally the

fij-t V (0,a 2 ). To implement the Gibbs sampler we would include the Aij as unobserved

variables. All full conditional distributions are straightforward to obtain. We omit

details.

Summ

Our intent has been to describe how Bayesian analysis of a broad range of ordered

parameter and truncated data problems can be straightforwardly implemented using the

Gibbs sampler. This approazh avoids well-nigh impossible numerical integrations over

high dimensional sets defined by complex restrictions. Rather, it only requires sampling

from univariate full conditional distributions restricted to easily described subsets of R1.

With conjugacy the needed full conditional distributions will be standard probability

distributions; without conjugacy we will have to employ tailored versions of general

random variate generation procedures. While sampling may be inefficient this is more than

compensated for by the ability to carry out full Bayesian calculations for many problems

which were previously inaccessible. T vo illustrative examples show how much stronger

inference can be when restrictions are taken into account in the modeling process.
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